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Abstract. In many data-centric applications it is desirable to use OWL
as an expressive schema language where one expresses constraints that
need to be satisfied by the (instance) data. However, some features of
OWL’s semantics, specifically the Open World Assumption (OWL) and
not having a Unique Name Assumption (UNA), make it hard to use
OWL for this task. What would trigger a constraint violation in a closed
world system like a relational database leads to new inferences in OWL.
In this paper, we explore how OWL can be extended to accommodate
integrity constraints and discuss several alternatives for the syntax and
semantics of such an extension. We primarily focus on applications in
the Supply Chain Management (SCM) domain but we are also gathering
use cases and requirements from many other application areas to assess
which of these alternatives provides the best solution.

1 Introduction

The commercial usage of IT systems based on formal ontologies — and, in par-
ticular, ontologies formalized with Description Logics (DL) — has steadily in-
creased since W3C completed specification of OWL. Ontologies promise, among
other benefits, flexible access to and semantic interoperability between diverse,
heterogeneous data sources. Ontology-based systems are, in that respect, a con-
crete means by which to pursue a common strategy for integrating heterogeneous
systems: to build abstraction barriers between the disparate parts of those sys-
tems in order to manage the underlying, messy complexities.

But some features of OWL’s semantics (where we mean, here, OWL DL,
primarily) make OWL rather less useful when it comes to use cases around data
validation:

1. OWL adopts the Open World Assumption (OWA): a statement cannot be
inferred to be false on the basis of a failure to prove it.

2. OWL does not adopt the so-called Unique Names Assumption (UNA) which
would cause OWL tools to treat two resources with different identifiers as
distinct objects.



These features not only make it more rather than less difficult to use OWL
for data validation purposes in a straightforward way; but they also consistently
surprise and frustrate OWL users, particularly those who are not experts in
ontology engineering. And yet, given OWL’s expressiveness, using it as a flexible,
abstract schema language for heterogeneous data sources is very appealing.

One compelling response to these problems described in the literature is
[6]. Under funding from NIST’s SBIR program, we are working on an Integrity
Constraint (IC) system integrated with Pellet in response. The utility of a robust
IC system for OWL is precisely that it will allow users, both expert and novice,
to have their cake and to eat it too.

What do we mean? ICs make it possible to use OWL as an expressive schema
language, while preserving the other core uses of OWL which rely on its standard
semantics. In other words, ICs are an important consideration for OWL-based
systems because they ease integration between and with data sources that adopt
the Closed World Assumption (CWA) and the UNA and to which users, ontology
engineers, and developers would like to apply the expressiveness of OWL in a
carefully controlled way.

In the remainder of this paper, we explore the design space for an IC system.
Our main objective is to provide an alternative semantics for existing OWL
axioms and constructs that will make it possible to use them as ICs. We also
describe possible syntax options that will indicate if an axiom should be treated
as an IC or as a standard OWL axiom. We also describe some motivating use
cases and requirements.

An important goal of this paper is to sanity-check our understanding of core
use cases and requirements of an IC system with the OWLED community, in
order to assure that it will be generally useful.

2 Motivation: Supply Chain Management

Given NIST’s obligation to promote manufacturing, we focus on Supply Chain
Management as a motivating use case for OWL’s use as an expressive validation
language. Supply Chain Management (SCM) is a species of information integra-
tion problem, in that it requires the integration of heterogeneous systems. SCM
systems often employ specifications of the content of message passing systems
as the primary means of accomplishing information integration. Focusing on
the content of messages, which are often concretely described in terms of XML
Schema or XML Infoset, provides a degree of abstraction and loose coupling
between systems. But the manner in which that content is specified is often not
abstract or loosely coupled enough.

Using OWL as a means of specifying message content standards in abstract
models is a reasonable response to this problem, but it faces several obstacles. As
we’ve seen above, the primary problem to directly using OWL to specify SCM
message standards is also an obstacle to the adoption or commercial utility of
OWL-based systems generally: it’s not simple to use OWL, given its standard
semantics, as an expressive schema language.



Hence, the main technical objective is to extend OWL to support an IC
interpretation of OWL axioms, which requires the evaluation of OWL axioms
under CWA to detect constraint violations. Constraint axioms are different from
ordinary axioms because they do not infer new facts; instead, they help to detect
errors and/or missing information in the data. These ICs may use any OWL
construct including HasValue, SomeValuesFrom, AllValuesFrom, MinCardinality,
MaxCardinality, and ExactCardinality restrictions as well as restrictions based
on user defined DataTypes or DataRanges.

This requires both syntactic and semantic extensions of OWL. The primary
objective for syntactic extensions is to ensure backward compatibility as much as
possible. With semantic extensions, we want to ensure compatibility with OWL
semantics and retain the decidability of OWL-DL.

The following are the main tasks we have identified to accomplish an initial
prototype IC system:

1. Identify use cases and requirements
2. Provide semantics
3. Provide syntax
4. Implement a proof of concept tool

Identifying use cases and requirements is an important step because there are
several different approaches. The decision as to which approach will be adopted
should depend on the use cases and requirements. We are soliciting feedback on
these requirements from OWLED community members.

3 Integrity Constraints in OWL

There are several different ways to come up with a syntax and a semantics for ICs.
Different semantic options provide different results which might be considered
unintuitive based on the application area. Different syntax options bring different
development and maintenance cost as well as backward compatibility issues.

In the rest of this section we will briefly describe three semantics candidates
studied in the literature and describe syntax alternatives for ICs. But first we
will give a very simple example that will be used throughout the document to
explain the differences between various semantics and syntax alternatives.

3.1 Example Integrity Constraints

Consider the following very simple OWL ontology O1 that contains only two
TBox axioms:

SubClassOf(Product SomeValuesFrom(madeBy Manufacturer))

SubClassOf(Product MaxCardinality(madeBy 1))

This ontology defines the concept of a Product by simply associating a prod-
uct to the Manufacturer it is madeBy. The combination of two axioms ensures
that each Product instance is related to one and only one Manufacturer instance.
Suppose we have another ontology O2 with the following ABox assertions:



ClassAssertion(prod1 Product)

ClassAssertion(prod2 Product)

PropertyAssertion(madeBy prod2 x)

ClassAssertion(prod3 Product)

PropertyAssertion(madeBy prod3 East123)

PropertyAssertion(madeBy prod3 West789)

ClassAssertion(East123 Manufacturer)

Although the product description in O2 does not seem to satisfy the restric-
tions in O1 there is no inconsistency according to OWL semantics. The assertion
about instance prod1 does not cause inconsistency because, under OWA, a rea-
soner would only assume it does not know the manufacturer of that product. The
instance prod2 does not cause inconsistency even though x is not known to be a
Manufacturer instance. Missing type information would be inferred by the rea-
soner and there is no information contradicting that inference. Finally, without
any more information, the assertions about prod3 are also consistent because,
without UNA, OWL semantics dictates that instances East123 and West789 refer
to the same instance.3

3.2 Semantics for Integrity Constraints

We believe the most important issue to solve for adding integrity constraints
to OWL is to define the semantics for constraints. OWL has a well-defined
model theoretic semantics [9] which provides a normative definition of ontology
consistency. The semantics of IC should be provided in a similarly unambiguous
fashion to guarantee consistency and interoperability.

In the following sections, we explain the three main options for IC semantics
that we are investigating. For each option, we provide the rationale for why we
think the option should be considered and point out potential problems.

Skolemization-based Semantics (Sem1) Motik et al. [6] describe an ap-
proach to augment OWL with ICs. This approach requires only to tag some
TBox axioms as being IC. These axioms are then used to check whether an
ABox is of an appropriate form, but they cannot imply new ABox facts. Ac-
cording to the given semantics, a constraint axiom can still imply a new TBox
axiom, e.g. a subclass relation can be inferred using ICs.

This semantics is based on the notion of outer skolemization [8] of first-order
logic formulae and minimal-model semantics. The intuitiveness of this semantics
is justified by the examples provided in the paper and with the analysis that ICs
do not affect the results of ABox queries.

If the axioms in ontology O1 from Section 3.1 were tagged as constraints
with this semantics, then we would get a constraint violation for all three prod-
uct instances. However, there are still unintuitive results that one can get with
3 There would indeed be an inconsistency if we also had an additional assertion stating
DifferentIndividuals(East123 West789). However, in practice such distinctness
assertions do not always exist.



this semantics. Specifically, TBox axioms can play an important role in the sat-
isfaction of constraints. For example, suppose we have an ontology O3 with the
following axioms:

SubClassOf(ConsortiumProduct Product)

SubClassOf(ConsortiumProduct

SomeValuesFrom(madeBy ConsortiumManufacturer))

SubClassOf(ConsortiumManufacturer Manufacturer)

EquivalentClasses(ConsortiumManufacturer

OneOf(East123 West789 ...))

ClassAssertion(prod4 ConsortiumProduct)

Unlike O2 ontology O3 does not violate the constraints in O1 even though we
don’t know which manufacturer makes prod4. This is because the SomeValuesFrom

restriction on ConsortiumProduct is written as a standard OWL axiom and is
enough to satisfy the ICs from O1.

There is also a compatibility issue regarding the skolemization-based seman-
tics with existing OWL semantics. The semantics is given in terms of first-order
formulae, whereas the model theoretic OWL semantics [9] is given in terms of
OWL constructs. There is a clear translation between the two, but introducing
first-order formulae adds a level of complexity which could make it harder for
ontology modelers to understand ICs (or predict the results of constraints).

Rule-based Semantics (Sem2) ICs require some sort of CWA. One way to
add CWA to OWL is through integration with logic programming (LP). LP
provides negation-as-failure under CWA and thus can be used to express ICs.

In the literature, there have been many proposals to integrate DLs with LP
[2, 7, 3]. The main idea is to separate the atoms into two sets — DL atoms and
LP atoms — where rules on the LP side can refer to both atoms, but DL axioms
can only refer to DL atoms. DL atoms are interpreted by a DL reasoner with
DL semantics under OWA. LP atoms are interpreted by an LP reasoner with
LP semantics under CWA.

Using LP rules to represent ICs is a simpler task than combining DLs and LP
for a hybrid reasoning framework, since we are not interested in LP atoms (ICs
would only refer to DL atoms) or inferring new DL atoms using LP rules. We are
only interested in checking if certain conditions regarding DL atoms hold, and
this can be achieved by rules that have only antecedents but no consequences.
In general, deriving an empty consequence indicates an inconsistency; in this
special case, it means an IC has been violated.

The two axioms from O1 can be translated into the following LP rules:

← Product(x) ∧ not (madeBy(x, y) ∧Manufacturer(y))
← Product(x) ∧madeBy(x, y) ∧madeBy(x, z) ∧ not y = z

Note that the DL atoms in these rules can be seen as queries to the ontology
where the negation operator not is evaluated as negation as failure.



Query-based Semantics (Sem3) Another closely related approach for rep-
resenting integrity constraints is proposed in [1]. The proposal is to use boolean
epistemic queries for constraints. An epistemic query uses the knowledge operator
K to indicate that query atoms should be interpreted under CWA.

For example, the following epistemic query

Q(x) = KProduct(x) ∧ ¬K(madeBy(x, y) ∧Manufacturer(y))

asks for all known Product instances that are not known to be made by a
Manufacturer. Such a query asked against the combination of ontologies O1 and
O2 would return both prod1 and prod2 since neither is an answer to the query
madeBy(x, y) ∧Manufacturer(y). With this approach, the constraint axioms,
as the ones in O1, can be translated to epistemic queries that will be used to
validate data.

Semantics Summary All three possibilities discussed above are closely related
to each other, yet have subtle differences that might have important consequences
in practice for ontology developers and tool builders. Rule-based and query-based
semantics are very similar (as the above examples show) but they would differ
in encoding some constructs, e.g. cardinality restrictions, and require different
kinds of techniques to validate the data. Unlike skolemization-based semantics
both these approaches require some kind of transformation from OWL axioms
to ICs which increases the complexity of the overall solution.

3.3 Syntax

This section presents alternatives for the syntactic representation of ICs. The
syntactic representation affects tools that accept ICs as input, such as validators,
and those that produce them as output, such as modeling software. Although the
development of a tool-specific syntax is possible, we consider that undesirable
because it would act as a barrier to interoperability.

We will now present four different syntax alternatives that we are considering.
We will explain the end-user flexibility each solution provide along with the
cost of implementing new tools to support the serialization. We also discuss the
impact of the syntax on existing OWL tools which are not explicitly extended
to support ICs.

New Vocabulary (Syn1) One alternative for syntax is the creation and appli-
cation of a new vocabulary for each OWL construct that can be interpreted with
integrity constraint semantics. A straightforward implementation would mirror
the existing OWL syntax but with a minor and consistently applied modification
of necessary syntax elements indicating the alternative semantic interpretation.
One such modification is to replace the OWL namespace with one specific to ICs
and reuse fragment identifiers as appropriate. E.g., owl:Restriction is replaced
by ic:Restriction, owl:minCardinality is replaced by ic:minCardinality, etc.

This alternative, by virtue of a distinct, separated vocabulary, has the bene-
fit of making the presence of semantic modification obvious in the serialization.



This benefit is accompanied by significant cost. For tool maintainers choosing to
add IC support to existing OWL tools, current parsers and serializers could not
be reused without modification. The size of the required modification is depen-
dent upon the existing implementation and the extent to which the new syntax
mirrored the existing syntax. The possibilities range from complete reimplemen-
tation to minor changes to recognize new URIs.

The impact of a new vocabulary on OWL tools which are not updated to
recognize the syntax is more significant. For tools accepting OWL input, the
presence of unrecognized vocabulary would lead to parse errors, which are dealt
with in a tool specific fashion. Often such errors cause abnormal termination,
sometimes they are silently ignored. Regardless of actual behavior on error, it is
very unlikely that any unmodified tool would be able to successfully parse the
syntax in a useful fashion, and possible that the user would lose the ability to
parse interleaved, non-IC axioms.

Similarly, no unmodified tools could output the syntax. Considered together,
these problems prevent using existing tools for any editing or interpretation of
ICs and strongly discourage adoption of a new vocabulary for ICs.

Ontology Annotation (Syn2) The simplest syntax alternative that would use
OWL annotations would do so by coining a new annotation property, analogous
to owl:imports, to identify an ontology which is to be interpreted in accord with
IC semantics. This approach requires the ICs to be maintained in a distinct file
from standard axioms.

For existing, unmodified tools processing a standard OWL ontology aug-
mented with constraints, the behavior will be as if the IC did not exist. This
happens because such tools don’t recognize the new annotation property and
the default semantic interpretation of annotation properties is that they have no
semantic effect. For such tools, the ICs, stored in a distinct file, will be ignored.

In contrast, because (Syn2) uses existing syntax to represent ICs, a user may
use existing, unmodified OWL tools for parsing, manipulation, and serialization
of ICs if the IC ontology is processed independently of the target ontology (i.e.,
the ontology that is to be constrained by the IC axioms). Such tools will interpret
the constraints using standard semantics, which may be acceptable for some
tasks, such as editing, but unacceptable for others. This alternative also reduces
the cost of enhancing existing tools because reusing existing OWL syntax allows
existing parsing and serialization tools to be reused.

The primary deficiency of (Syn2) is that it reduces user flexibility and in-
creases the maintenance burden by requiring that ICs be kept in a separate, dis-
tinct file from the target ontology. It may also create user confusion because the
IC ontology has one set of semantics if evaluated stand-alone (that is, standard
OWL semantics) and another (IC semantics) if evaluated via annotation-based
inclusion from a target ontology.

Axiom Annotation (Syn3) A second syntax alternative using OWL anno-
tations leverages the ability to annotate axioms rather than ontologies. Axiom
annotation is included in the current OWL 2 draft specifications but was not



available in OWL 1.0 (which only allows annotation of entities, i.e., classes, prop-
erties, individuals and ontologies). By using axiom annotations, ICs could be
identified using a specific annotation property and a boolean flag. For example,
the following syntax samples indicate that an exact cardinality restriction should
be interpreted according to IC semantics and according to standard semantics,
respectively.

SubClassOf(

Annotation(ic:asIntegrityConstraint "true"^^xsd:boolean)

PurchaseOrder ExactCardinality(1 orderDate))

SubClassOf(

Annotation(ic:asIntegrityConstraint "false"^^xsd:boolean)

PurchaseOrder ExactCardinality(1 dueDate))

Note that for backward compatibility and ease of maintenance we would
assume that the non-existence of an annotation means the axiom should be
interpreted with the standard semantics.

Axiom annotation contrasts with ontology annotation in an obvious way:
unmodified tools will process the IC axiom, but ignore the annotation indicating
it is an IC. This will lead to ICs being processed in accordance with standard
semantics. This may be acceptable for some tasks, such as editing, but is likely
to cause problems in reasoning applications, and is the primary deficiency of the
axiom annotation alternative.

However, (Syn3) allows existing parsers and serializers to be reused by tools
enhanced to process ICs. Relative to use of ontology annotation, (Syn3) low-
ers the maintenance burden on users because ICs can be included in the same
ontology as standard axioms.

A deficiency of (Syn3) is that it, like (Syn2), uses an annotation property to
attain a semantic effect, despite the convention that annotation properties are
presently defined in OWL 1.0 to have no semantic effects.

A risk of this alternative is its dependence on future standards activity. The
behavior of legacy tools that do not support OWL 2 axiom annotations is dif-
ficult to predict because the OWL WG has not finalized the mapping of such
annotations from abstract to concrete syntax, and it is currently unknown how
backward compatible the mapping will be.

Rich Annotations (Syn4) The final alternative for IC syntax is based on
the rich annotation proposal4 currently being considered by the OWL WG. The
proposal extends the annotation mechanism in the OWL 2 working drafts to
explicitly support annotations that have semantic consequences by grouping an-
notations into defined annotation spaces. Using this approach, an annotation
space would be defined for ICs and the space would have mustUnderstand status,
which indicates that tools should not treat annotations in the space as semantics-
free. IC axioms would be annotated as in the axiom annotation alternative, but
each annotation would be associated with the IC annotation space.
4 See http://www.w3.org/2007/OWL/wiki/Annotation System for more details.



For the purpose of evaluating this alternative, we assume existing, unmodified
tools support OWL 2 axiom annotations and rich annotations.

The primary difference between (Syn3) and (Syn4) is that tools which have
not been extended to support ICs would, by virtue of the annotation space
declaration, still recognize that the annotations have semantic consequence and
could modify their behavior accordingly. For instance, an editor might allow the
axioms to be edited and preserve the annotations, but a reasoner would likely
produce an error. Thus, (Syn4) maintains the benefits of (Syn3) while minimizing
its costs.

(Syn4) increases risk over (Syn3) because rich annotations are considered a
more controversial feature addition to OWL 2; and, as such, may not be part of
the final specification. It’s notable that ICs are one of the motivating use cases
put forward with the proposal to include rich annotations in the standard.

Syntax Summary (Syn1) requires a new vocabulary to be created, and all
components in the toolchain to be modified. For this reason, it is considered
the most disruptive alternative. (Syn2)–(Syn4) leverage OWL annotations in
different ways to avoid a new vocabulary and differ primarily in the expected
behavior that they would cause in existing tools, i.e. those tools which are not
explicitly modified to process ICs. (Syn3) and (Syn4) depend on ongoing W3C
Working Group work; selection of the most advantageous alternative will likely
depend on the progression of that work.

Note that the syntax alternatives are independent of the semantics options
we considered. We can translate the IC axioms written with any of the syntax
options to a format required by the semantics interpretation, e.g. LP rules or
epistemic queries.

3.4 Implementation Strategy

The section describes the requirements of a suite of software tools used for IC
validation. Minimally, two components are anticipated in a prototype system: a
syntax compiler for ICs and a data set validator.

A syntax compiler (SC) translates ICs from a persistent serialization format,
e.g. RDF/XML, to an internal software representation, e.g. LP rules if a rule-
based approach is adopted, that can be used by a validation tool.

A data set validator (DSV) is a software component that accepts as input
a set of ICs and a data set, and which outputs, minimally, a boolean result
indicating if the ICs are satisfied by the data set.

The DSV has obvious extensions beyond the minimal requirements. Most no-
tably, in the event that the data set input does not satisfy the ICs, the component
can return additional information. The simplest such extension is to report the
first unsatisfied IC. Additionally, the data violating the constraint can be iden-
tified. Similarly, the validator could report not just a single violated constraint
but all violated constraints.

Reporting causes of IC violations is related to inference explanation in De-
scription Logic [5]. Further, existing work on presentation of precise explanations



[4] may be leveraged to improve the quality of output from the DSV. The proto-
type implementation will be used to explore the applicability of such techniques.

4 Conclusions

In this paper, we have presented our initial analysis of how OWL can be extended
with integrity constraints. We discussed several alternatives for the syntax and
the semantics of such an extension. We are seeking use cases and feedback from
the OWL community to determine which alternative provides the best solu-
tion. As we reach a decision on these alternatives we are planning to implement
a proof-of-concept validator as a Java software component that can be easily
combined with existing OWL tools, including the Pellet reasoner and OwlSight
ontology browser5.

In this paper we have only focused on giving an IC semantics to existing
OWL axioms and constructs. One obvious extension is to allow ICs that cannot
be directly expressed in OWL. For example, OWL 2 allows only a restricted form
of property chains (to maintain decidability) but presumably a more relaxed
use of property chains in ICs would be possible. We plan to investigate such
extensions as part of our future work.
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